| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210 |
- #!/usr/bin/env python
- import gunicorn.app.base
- import sys
- from predictor import Predictor, Prediction
- class CustomUnicornApp(gunicorn.app.base.BaseApplication):
- """
- This gunicorn app class provides create and exit callbacks for workers,
- and runs gunicorn with a single worker and multiple gthreads
- """
- def __init__(self, create_app_callback, exit_app_callback, host_port):
- self._configBind = host_port
- self._createAppCallback = create_app_callback
- self._exitAppCallback = exit_app_callback
- super().__init__()
- @staticmethod
- def exitWorker(arbiter, worker):
- # worker.app provides us with a reference to "self", and we can call the
- # exit callback with the object created by the createAppCallback:
- self = worker.app
- self._exitAppCallback(self._createdApp)
- def load_config(self):
- self.cfg.set("bind", self._configBind)
- self.cfg.set("worker_class", "gthread")
- self.cfg.set("workers", 1)
- self.cfg.set("threads", 4)
- self.cfg.set("worker_exit", CustomUnicornApp.exitWorker)
- # Try to uncomment and make 10 requests, to test correct restart of worker:
- # self.cfg.set("max_requests", 10)
- def load(self):
- # This function is invoked when a worker is booted
- self._createdApp = self._createAppCallback()
- return self._createdApp
-
- # --- index.html contents
- html = """<!DOCTYPE html>
- <html lang="en">
- <head>
- <meta charset="UTF-8">
- <title>Cell Growth Classifier</title>
- <script>
- function uploadImages() {
- var formData = new FormData();
- var imageFiles = document.getElementById("imageInput").files;
- var imageFilesArray = [];
- for (var i = 0; i < imageFiles.length; i++) {
- formData.append("images", imageFiles[i]);
- imageFilesArray.push({name: imageFiles[i].name, file: imageFiles[i]});
- }
- fetch('/upload', {
- method: 'POST',
- body: formData
- })
- .then(response => response.json())
- .then(data => {
- var results = data.results;
- var sortedKeys = Object.keys(results).sort(); // Sort the filenames
- var table = document.getElementById("resultsTable");
- table.innerHTML = ""; // Clear the table first
- // Create table header
- var header = table.createTHead();
- var headerRow = header.insertRow(0);
- headerRow.insertCell(0).textContent = "Image";
- headerRow.insertCell(1).textContent = "Filename";
- headerRow.insertCell(2).textContent = "Analysis";
- // Create table body
- var tbody = table.createTBody();
- // Insert a row in the table for each sorted image result
- sortedKeys.forEach((imageName) => {
- var imageFile = imageFilesArray.find(file => file.name === imageName);
- var row = tbody.insertRow(-1);
- var cellImage = row.insertCell(0);
- var image = document.createElement("img");
- if (imageFile) {
- image.src = URL.createObjectURL(imageFile.file);
- image.onload = function() {
- URL.revokeObjectURL(this.src) // Free up memory
- }
- } else {
- image.alt = "Image not found";
- }
- image.style.width = '100px'; // Set the image size
- cellImage.appendChild(image);
- row.insertCell(1).textContent = imageName;
- row.insertCell(2).textContent = results[imageName].text;
- });
- // Set the model used
- document.getElementById("modelUsed").textContent = "Model used: " + data.model;
- })
- .catch(error => {
- console.error('Error:', error);
- document.getElementById("results").textContent = "An error occurred while uploading the images.";
- });
- }
- </script>
- <style>
- table {
- border-collapse: collapse;
- margin-top: 20px;
- }
- thead, td {
- border: 1px solid #ddd;
- padding: 8px;
- text-align: left;
- }
- thead {
- background-color: #f2f2f2;
- color: #333;
- font-weight: bold;
- }
- td {
- font-size: 0.9em;
- }
- img {
- width: 100px; /* Adjust the size of the image if necessary */
- height: auto;
- }
- #modelUsed {
- margin-top: 20px;
- }
- </style>
- </head>
- <body>
- <h2>Cell Growth Classifier</h2>
- <input type="file" id="imageInput" accept="image/*" multiple>
- <button onclick="uploadImages()">Analyze</button>
- <p id="modelUsed"></p>
- <table id="resultsTable">
-
- </table>
- </body>
- </html>
- """
- # ----
- from PIL import Image
- from bottle import Bottle, request, response
- import threading
- import io
- def startServer(index_html:str, predictor:Predictor, host_port:str):
- def create():
- app = Bottle()
- lock = threading.Lock()
-
- @app.route("/")
- def getIndex():
- # Serve static content, no lock protection necessary:
- return index_html
- @app.route('/upload', method='POST')
- def upload_image():
- uploads = request.files.getall('images')
- results = {}
- for upload in uploads:
- # Read the image file in bytes and open it with Pillow
- image_bytes = io.BytesIO(upload.file.read())
- try:
- with Image.open(image_bytes) as img:
- pred:Prediction = app.predictor.predict(img)
- results[upload.filename] = pred.getDict()
- except IOError:
- response.status = 400
- return "Invalid image file"
- return {"model": app.predictor.modelName, "results": results}
-
- # Store predictor in the bottle app object
- app.predictor = predictor
- return app
- def exit(app):
- # Get the service through the app object and save state
- pass
- CustomUnicornApp(create, exit, host_port).run()
- def usage():
- print("""Usage:
- server.py modelfile host_port
- Example:
- ./server.py cells_2.pth localhost:8001
- """)
- if __name__ == "__main__":
- if len(sys.argv) != 3:
- usage()
- else:
- p = Predictor(sys.argv[1])
- startServer(html, p, sys.argv[2])
|